Attributes of a Rubble Driven Collapse
ATTRIBUTES OF A RUBBLE DRIVEN COLLAPSE^{1}
The first thing I want to look at is peak impulse in parallel collision of identical grains with a surface. If, instead of a rigid mass M, there were N particles summing to the same mass M colliding with a surface, how would the peak impulse delivered to the surface differ as the collisions varied from being simultaneous to being spaced out a bit?
This shows how peak force diminishes as a rigid body goes to a uniform random particle distribution about an average vertical separation distance, modeled with finite delta functions. This could be taken to be the peak force experienced by an impacted load bearing surface as the impactor goes from solid to particulate with increasing dispersal or relative compaction. The grains do not interact, they just impact the surface over an ever increasing time interval dictated by the average separation of peaks. An arbitrary reference velocity is chosen.
horizontal axis: average center separation in effective radius distance units
vertical axis: peak force; max=100
Peak force is important in considering whether a member will yield under impulse. For example, if a brittle surface yields under an applied force of 65 units in the graph, then an average interparticle separation of 3 units or more will not result in yield. The graph above is very, very trivial, expressing little beyond what basic intuition suggests. As soon as the hits become staggered to the order of the particle size, the peak force drops off. By the time the average separation is 10 radii the average of peak forces is 20% of that experienced by a single hit from one large mass.
The peculiarities of the model and the sampling combine to give this curve its shape, so don't take it as a general case. By using a simple bell shaped impulse for each collision, the location of the dropoff after critical separation is initially shallow, then very steep but becoming increasingly shallow again. Had a step function been used instead, the lines (except for the introduced randomness) would be straight. Not very interesting, neither very realistic. Debris oddsorts, excluding columns and braces of significant size, might well be expected to be compressible up to a point, and a simple sigmoidtype time derivative seemed appropriate for brief impulses from either elastic or inelastic collision.
I chose to use a uniform random distribution which averaged to the target separation rather than using all the same values. By executing a large number of trials, a set of maxima and minima over the distribution was obtained and are represented by the upper and lower lines, respectively. The middle (red) line shows the average of all trials or what might be the nominal case. The purpose was to get a practical spread on the peaks found in randomized grain densities of bounded size.
The limitations are severe, naturally. By parallel impact, I mean the particles do not stack up behind each other, each one impacts at its own point in time as an independent entity. Not a meaningful physical situation in itself, but think of it as a 1D abstraction in that this represents a differential horizontal layer of varying density. To go to 2D, in this case a vertical plane, the layers are extended vertically. The remaining horizontal dimension can be taken as translationally symmetric to the other up to the boundaries of the system.
This scheme of noninteracting particles will not be meaningful in a vertical integration. It does not count for accumulation of load on the surface, just change of momentum from the impact. As particles are allowed to accumulate, not only will static load increase but the effective static mass of the impacted surface will also increase, changing the momentum calculation when yield does occur.
The answer on the effects lies somewhere between a large rigid integral mass at some velocity and any sort of the same amount of mass at rest.
RigidBlock ?Granular Gas
At first only a ballistic solid mechanics simulation is considered. Grains interacting with each other and the environment, which will include an optional target which is at least initially an integral object. At this stage, any resemblance between a target and a floor assembly is intentional, but not to be taken to have strong correspondence. In most or all cases, the target will function simply as a load transducer and there will be no intention of modeling realistic floor (or perimeter) response.
I'm using the terms 'particle', 'granule' and 'grain' interchangeably.
Parameters and model choices for a simple ONEGLOBALCOLLISION model:
Dimensionality
1, 2 and 3D are all useful. 1D inelastic gases have immediate and direct utility. In cases of assumed spatial symmetry, 2D can substitute for 3D and make it all go quicker. Changes in fundamental results can be tracked as dimensionality increases.
Fixed Constraints
Presence or absence of immutable barriers (wall, ground) to confine the motion of the system. The geometry and placement of same.
Basic Environment
Gravity on/off, total size of any enclosure.
Number of Particles
1 to N. A single particle is the monolithic rigid block or a single local impactor. As N goes very large, the system tends towards powder. Allowing granule fracture means N can be variable.
Material Elasticity and Deformability
Particles would generally be nearrigid for expediency but not necessarily always so. Particle aggregates may be deformable. Elasticity of colliding bodies often determined by supplied restitution.
Particle Size Distribution
Uniform at one end of the scale, various random distributions at the other. This could span many orders of magnitude in real debris and poses a serious problem for any computation. Most solvers are susceptible to error when the differences between the least and greatest magnitudes of a parameter differ by many orders.
Particle Shape
The simplest of the shapes for each dimension are point, circle, sphere. Primitive shapes make for the simplest systems and quickest execution times, but the sky's the limit. Spheres, cubes, cylinders, and tetraheda are the most likely atomic elements.
Material Density
The mass per unit volume of the material composing granules. If more than one material, there will be as many density values of this type.
Particle Density Distribution
A uniform random distribution is the simple case. Various gradients according to initial compaction is an example of something more involved.
Particle Velocity Distribution
The group of granules will have a net momentum but individual particle momenta can initially range from uniform coherent to highly randomized.
Effective Density
This is the overall density of the granular collection in a given area. The area may be of arbitrary interest or the entire extent and mass of all granules.
Since first experiments need to be the simplest ones, there will be plenty of time while they're running to plan the next stage. Especially since this is not the only thread wanting for simulation.
1D is useful, but boring, and I've already taken 1D gases pretty far and most of that is not of general interest. There is no efficiency advantage to running 2D in a 3D program, but there are some 2D programs of merit for this problem. 2D only assumes a translational symmetry in one dimension so is quite appropriate for much of the discussion.
Granules can be uniform spheres in the beginning. Restitution, group velocity, effective density and number of particles will be explored for the sphere set. A few size distributions next using the most interesting parameter band of the previous. Then a bounding subset of the same for another shape.
All bodies will be effectively rigid since the computations run much quicker, unless a particular environment imposes little penalty for some crude distortion. Granule fracture will not likely be part of early work.
The target will initially be rigid with no fracture. Both fixed and free variations are very useful, as the dynamics are quite different. The hybrid of a breakaway target is best, but perhaps not as useful as is seems until some meaningful threshold of failure established. This would be based somewhat on actual impulse imparted to the target based on free tests. Obviously, the target must be at least partially fixed if gravity is on.
A rubbledriven collapse is a gravity driven collapse. While a few runs may be done without gravity in the beginning, the effects of cumulative static loading may as well be incorporated quickly.
There's the next few months of spare time, once very first few trials are designed. Since I've already got PhysX up and running, it makes sense to start with spheres hitting a plate in 3D until a second environment can be chosen and integrated.
A crude precursor to a 2D collision simulator which will handle many thousands of disk elements.
Hopefully it speaks for itself. A drop of 100 identical disks arranged in a 10x10 grid with an average edge separation of 20% diameter in the
x and
y directions. The vertical separation is exactly 20%, whereas the horizontal separation is randomized by half that amount. The first frame shows the start position of the grid which then drops as a unit to the ground. The frames are not equally spaced in time but show interesting points from initial contact to scattering.
If the horizontal spacing is perfectly uniform, the rows bounce together and the ensemble behaves as ten 1D gas columns:
Here's a good basic introduction to collision dynamics as applied to granular problems.
ESysParticle,
Yade,
Code_Aster/Salome/Meca,
LIGGGHTS,
OpenFoam and a few others are all excellent programs for this task, but all Unix.
Dual boot system? Maybe. Fresh new particle simulation software based on best features of above? In work.
Good commercial software out of the question.
At what point does this become unphysical?
I say the first time step. But it was fun.
Here's a side view of the bullet and coin.
Some may notice it's a mighty tough bullet. Yes, it is, by design.
Fracturing
Susceptibility from none to some arbitrary limit, both of granules and target.
Target Properties
Free or fixed. Density. Total mass. Rigid or flexible, and how much.
These aspects will be covered later, but it's useful to see the simplest case first.
Others might wonder what a bullet hitting a coin has to do with rubble, considering I just ripped 13 pages out of this thread. Well, it's about validating one of the candidate programs for exploring one aspect of the problem, which is ballistic collision with deformation and fracture.
In physics, collision problems are typically framed as elastic or inelastic, with some mention of restitution and a few momentum conservation problems where masses move away from the collision after KE loss. This puts a face on the latter. Eventually, with more close approximation of true fracture of brittle materials, studies can be done where the collision interactions are of the form
body + body > many bodies and
many bodies + many bodies > many more bodies.
It pays to start simple, though. The bullet is very resilient* because otherwise the elements at the tip fracture and, in this program, that means being deactivated and no further participation in the simulation. This is part of my complaint about the program. A bullet tip does not dissolve at 70 m/s and, even though it will vaporize somewhat at 700 m/s and maybe a lot at 7000 m/s, that's still not the same as disappearing. The true properties of lead, when plugged into this model, do not behave well for all velocities. Now I know something very useful about this program.
By testing simple systems, sanity checks are possible where it is not with more complex systems where the operator relies on the software to give a decent result as the real solutions are unknown.
* to be specific, I set it to a failure stress 100 times greater than that in the original example. Otherwise, it's lead!
More on sanity checks. The shading colors in the previous animations are based on XY plane stress values in the elements. Notice how the coin retains a final stress pattern after the bullet has passed through, almost locked in with very little change. This is a free body subjected to no external forces. All internal static forces must sum to zero, and I'm not sure that's true here.
The bullet has modes of oscillation, reflected in the timevarying stresses propagating through the body. Fine. The coin has been workhardened, but only in theory and certainly not in this simulation. The coin shows high stress gradients with no significant symmetry. I can't at this point formally state what troubles me so, except that an elastoplastic mesh which is not exhibiting deformational oscillation modes should redistribute the stress to a new equilibrium. Does what's seen above make sense?
More of the same, bullet and coin. Pictures are so much nicer than words, but some explanation will be necessary.
These are like the others except for changes in initial orientation of the bullet. In the first one, the bullet is offset towards the edge of the coin, in the second it's rotated 30 degrees (same velocity vector though as the others).
Four large gifs showing simulation results (allow some time for all to load, apologies to users whose browsers load these when page loads):
Bullet  Offset from center (side view)
Bullet  Offset from center (back view)
Bullet  Rotated off trajectory axis (side view)
Bullet  Rotated off trajectory axis (back view)
In both cases, there is a
net angular momentum in the system, unlike the previous case. In the discussions here about momentum conservation, there's been little or no mention of conserving
angular momentum, but it's always there.
Consider general collisions in a crowd of debris: Different sizes and shapes of grains; a distribution of velocities, not necessarily random but somewhat randomized. Things come from every which way at each other. The idealized system of a perfectly aligned normal impact of one surface to another, collinear with center of mass, with uniform and highly symmetric bodies, represents a singular rare case not to be found in a debris field.
In these experiments,
the introduction of asymmetry has profoundly changed the results of the collision, all other things being equal. Where the (nearly) direct center impact from before punched through the coin and imparted some linear momentum to it in the process, these later trials pierce but do not penetrate. The case of the 30 degree rotation is not a surprise since this change of geometry presents a greater cross sectional area of collision, but what of the first?
Let your eyes do the walking. From a simple physics standpoint, the system initially has only translational kinetic energy, no rotational, but
does have an initial net angular momentum. The geometry of the collision dictates the applied impulse will produce a moment about the coin's center of mass. Whether or not the two bodies stick together, the coin will be spinning after the collision.
Translational KE gets partitioned into both translational and rotational KE, and quite a heap goes into rotational in a single collision. Besides the normal losses in collision to plastic deformation, fracture/pulverization and thermal dissipation,
there is a rapid energy transfer to rotational degrees of freedom when integral bodies shatter and constituents subsequently recollide. For any arbitrary pair of shapes, there will be an scattering cross section associated with each possible orientation and, if plastic deformation included, a complex velocity dependency.
Rotational kinetic energy is not dissipated
per se, since it is available to mechanical work. May I
suggest that, while it remains available,
it is less efficient at producing significant damage than translational KE and one step closer to being out the door into thermal waste. It is very nearly a hidden internal degree of freedom.
In future experiments involving the evolution from frictionless spheres to spheres with both static and dynamic friction properties, then to other shapes with simple moment interactions like these, it will be possible to see the diversion of translational into rotational energy and what effects it has on a debris stream.
Impact is a pretty cool program (if you stick to tweaking the examples)
On the positive side, I don't see as much to complain about as far as realism with these last runs, as judged by eye. In the offcenter impact, back view from behind the coin, the perimeter of the coin can be seen drawing in towards the center until reaching a maximum deflection, followed by a muted elastic response. This is good, it indicates the handling of the elastoplastic response, with permanent welldistributed deformation yet some hysteresis, is at least qualitatively within expectation.
Taking Data; but how good?
Of course, trackers will be added to record dynamic quantities as simulations progress, but there will be limited time to do much in the way of validation except very simple systems. There will be no way, in general, to detect a subtle computational error unless it violates energy conservation. Therefore, it is best to approach all of the forthcoming simulations from a
relative or
comparative perspective, as well as a critical eye, both with respect to ones performed in the same environment as well as differing frameworks.
Virtual Whatevers
One has to think of these simulations as valid representations of
something, so long as there are no obvious flaws, but applying whatever lessons learned will require care and discernment. The bullet and coin is an extremely simple system. From a theoretical standpoint, there is an infinite variety of results to be obtained from varying the available parameters, though probably the input maps continuously and fairly smoothly to results within the valid solution domain. From a practical standpoint, each framework has limitations on how accurately it can reproduce physical systems far from equilibrium, there may be only a limited band or no range at all where the simulation corresponds to reality, even with a bullet and coin.
Clock Time
It takes about 10 minutes to run each of these last series. Much more overhead pre and post. As the system scales in complexity, the time to compute increases drastically. As does setup and post processing, though not as much. So also does the chance of catastrophic blowup (singular matrix, program exception, etc) increase. It's not possible in the spare time of one person to fully evaluate the universe of discourse composed only of a bullet and a coin, and that's not even much like concrete, trusses, columns and office contents.
As notions become evident, they can be assimilated and guide future study towards fruitful results, primarily by exclusion of the uninteresting. It is an exercise in becoming an efficient cyborg, or the converse, if nothing else.
All properties of the simulation exactly the same as the rotated bullet above, except now the bullet is 'steel' instead of 'super lead'.
The visualization depicts total strain per element, and this time there's a front view instead of back view.
Side view
Front view
Here's an example of a means to obtain some correspondence between a particular simulator and a real (though very simple) physical system, besides comparison with analytical results for eigenvalues and momentum conservation: axial compression tests.
Consider cylinders. There is plenty of research in
free literature covering [acronym=AnalyticalPhysicalComputational Experimentation]APCE[/acronym]
* of axial load testing of cylinders of various material, solid/hollow, sizes and thicknesses. Some examples:
There was a real nice master's thesis by Eric Fink (INVESTIGATION OF THE PROPERTIES OF HYBRID PAPERBOARD AND FIBER REINFORCED POLYMER TUBES ) which has been pulled from his university website. Fortunately, I grabbed some loaddisplacement graphs from it:
From the first link, simulation of an axial crushing mode:
Results from running an example file in the Impact distribution:
This can be tweaked rather easily to try various materials, lengths, diameters and thicknesses. Load displacement diagrams can be generated and compared to the work of others.
*Yes, I made up that acronym but it's something I write frequently.
Yarimer again. A gem, get it while it's free:
The effect of rubble accumulation on the mechanics of demolition by rapid collapse.
by E. Yarimer, C.D. Brown
from the Abstract:
The downward velocity of parts of buildings in the course of rapid collapse is compared with the velocity in free fall.
The comparison shows that there are significant upward reactions acting on the falling parts.
Based on laboratory tests on scaled down rubble, a power law compaction curve is introduced and the penetration of a falling mass into the rubble is predicted.
It is shown that deeper layers of rubble can be represented by a modification in one of the parameters of the compaction curve.
Many other nice free papers relating to this topic, at least peripherally, from the same volume which contained the Yarimer paper (
Structures under Shock & Impact IV):
Dynamic buckling of columns due to slamming loads
Design concept for reinforced concrete slab structures under soft impact loads
Impact of transport flask on thick reinforced concrete slab
Ultimate deformation capacity of reinforced concrete slabs under blast load
Shock equation of state properties of concrete
Fracture energy of plain concrete beams at different rates of loading
Modeling failure waves in brittle materials
On the stresswave focusing effect in elastoviscoplastic solids
The plate impact response of three glasses
Some useful background material. Most mathheavy and too detailed to be of strict concern here, but forms the underpinnings of the topic and in some cases the software which is used to simulate material dynamics.
Continuum Mechanics
Continuum Mechanics
Deformation
Elasticity
Plasticity
Viscoelasticity
Viscoplasticity
Stressâ€"strain curve
Infinitesimal strain theory
Finite strain theory
Yield
Von Mises yield criterion
MohrCoulomb theory
Poisson's ratio
Peridynamics
Fracture
Fracture mechanics
Fracture and Failure
Strain energy release rate
StressStrain Behaviour of Concrete
Fluid Mechanics (with emphasis on NonNewtonian fluid)
Fluid mechanics
Fluid dynamics
NonNewtonian fluid
Powerlaw fluid
Rheology
Thixotropic
Herschelâ€"Bulkley fluid
Shear thinning
Firstorder fluid
Secondorder fluid
Bingham plastic
Dissipative particle dynamics
Complex fluids
Statistical Mechanics of NonEquilibrium Liquids
Solid Mechanics
Solid Mechanics
Standard Linear Solid model
Failure Theory
Contact mechanics
Contact dynamics
Contact Dynamics for Rigid Bodies
Twodimensional gas
Frictional contact mechanics
LINEAR AND NONLINEAR MODELS FOR IMPACT WITH FRICTION
Elastoplastic contact of rough surfaces
Certain NonClassical Effects in Contact Mechanics
Maxwell material
Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures
Granular Mechanics
Granular material
An Overview of Granular Theories
What is a Granular Medium?
Granular Fluids
Granular Matter Links
The reality is the problem is far too monstrous to fit in the classroom mechanics pigeonhole. Once that becomes apparent, it seems quite prudent to step back and assess the situation, taking as long as is required to get bearings. What kind of problem is it, really? How are those problems solved?
Okay, Bazant had his idealized and 'limiting' case. As such, it is not an accurate description of the mechanism, this is a given and strike one. But what is the bridge to reality? Is it correct to say that the limiting case means the collapse must necessarily be faster since it necessarily dissipated less energy? It wasn't. It was by and large slower. Strike two for a narrative.
We saw how avalanche mechanics with its dependency on the square of velocity tidied up that detail. All the same, the analytical avalanche model is still 1D and basically requires global participation across the lateral dimensions out to the perimeter. There is nothing to account for dispersion into adjacent space within these bounds, a simple consequence of rapid entropy increase and a tendency towards equipartitioning mechanical energy into all degrees of freedom and all available space. But the leading progression was interior and was localized. Take away the idealization of a rigid block and, absent a candidate integral driver, rubble must be the driver of these progressions.
One thing I've gleaned from the literature search: unconfined rubble streams do not in general remain spatially localized in collision! As you would expect!
Therefore, is it even necessary to proceed? The hypothesis is that rubble can drive a collapse 
 through the weakest parts of the structure
 in a highly localized region
 with tight coherence and spatial continuity over time
 ahead of the parts Bazant calculated as a bounding case
 which parts were going slower than he calculated for axial compression
 which parts were missing each other, not compressing at all
 which parts should've therefore been going faster (but weren't because they were strongest and unloaded?)
 yet in at least one case rubble converges on terminal velocity by the time it can be tracked
Them's some mighty tight constraints on the action of a debris stream, partner. May be. In any case, just formulating a plan of attack takes a little more thought than fits on a napkin or back of an envelope.
I've no problems with rubble munching its way down through the floors, busting out the perimeters and so on. I can see the erosion induced by the flow in the NE corner of WTC2. But that's long after some much smaller collection of junk ripped through the previously intact floor area much faster!
It's one thing to demonstrate that collapse is possible from impact and fires. Or that once the top starts moving, large scale collapse is inevitable and total collapse is highly probable. No question of the value in that.
It's another thing to capture the mechanism by which collapse actually occurred. Many times over the years I've seen it waved off  for good reason, look at the abbreviated study list. (Buckling, interestingly enough, is not in the list) It seems to be sufficient to know global collapse is probable given certain initial conditions and consign the actual mechanics to the great unknown. Who cares, right?
There are more detailed constraints, observed, which need to be met. I am not doing this because I perceive there is an answer available in the most improbable scenario of sequential charges. Hardly. This is a scenario quite distasteful to the few savvy 'assistance' proponents, for gods' sakes. I did not seek this conundrum, the perception of which could be due to lack of knowledge, and will be quite happy to stop at "unanswered" if it comes to it.
It just seems someone ought to try to frame the problem accurately and use the correct tools to solve it. Right now, it looks a *little* bigger than I am. I doubt it's too big to be done, though. There may indeed be a sweet spot of... dynamic equilibrium. Might be inherent in the structures.
If it doesn't look weird to you, then there's nothing to be done. Conversely, when the going gets weird, the weird turn pro (thanks HST). If I can't make reasonable headway at producing something better than a NOVAgrade animation, with some real physics behind it, I'll bet someone can.
If the leading progressions were not localized avalanche in a chute, what would they be?
Overpressure. I can't say nonono, but I will say no.
Chunks of... what? (adoucette also suggested elevator motors, but no). This assumes material in motion.
Cleaving action from above?
Bazant dismissed the 'fracture wave' and claimed only harmless elastic waves. Who knows if this was supposed to apply to the ideal model under discussion or the towers themselves? One would presume the latter, as it is a theoretical notion concerning the limits of stress at yield. This doesn't eliminate eccentric loading as a means to induce fracture ahead of motion.
It must be recognized that I've seized on a couple of details (WTC1 SW, WTC2 E) and conferred upon them a subjective interpretation. In other words, there will be a segment who feels I've invented a problem, and "RubbleDriven Collapse" is the hypothesis to solve the imaginary problem. Could be.
Show me there is no problem and I will spend a lot more time on other interesting problems which have nothing to do with 9/11. I will thank you.
Regional pancaking. It seems possible. It's a 1D sliceslab model with velocitydependent pulverization of the concrete and eventual shedding to the surrounding interior. No pooling of debris required because it acts like 1D, migration of debris out of the plug is driven by plug pressure and occurs only at the interior lateral boundaries, accretion occurs also with velocity dependence but over a greater surface area.
The only hitch I see is the first few impacts after detachment have to be like butter, like it was nothing. How many floors could drive this at initiation? Two, maybe three, from a static start? I need to check again how many seconds of lead time three floors needs to jump out ahead of the global drop for WTC1. I believe 12 floors simultaneously was required to do it with less than a half second, considering momentum transfer only. Completely out of the question.
Kinetic theory
Mean free path
Momentum Transport in Granular Flows
Maxwell speed distribution
A Review of PlasticFrictional Theory (Part. 1)
Fluctuations at the critical state of a polygonal packing
Jamming
Experimental and computational studies of jamming
Angle of repose
Random Close Packing of Granular Matter
Interaction of a granular stream with an obstacle
Internal Avalanches in a Granular Medium
The path to fracture: dynamics of contact networks in granular flows
An approximate hard sphere method for densely packed granular flows
Weakly nonlinear analysis of two dimensional sheared granular flow
Collective rheology in quasi static shear flow of granular media
Granular Solid Hydrodynamics: Dense Flow, Fluidization and Jamming
Incremental response of granular materials: DEM results
Compaction in Granular Solid Hydrodynamics
Validation of Models for the Flow of Granular Media
Extended event driven molecular dynamics for simulating dense granular matter
Dynamical Heterogeneities in Grains and Foams
Mapping forces in 3D elastic assembly of grains
Granular impact and the critical packing state
Irreversible dynamics of a massive intruder in dense granular fluids
Janssen effect and the stability of quasi 2D sandpiles
Droplet and cluster formation in freely falling granular streams
From granular avalanches to fluid turbulences through oozing pastes: A mesoscopic physicallybased particle model
Pressure independence of granular flow through an aperture
Slow relaxation and compaction of granular systems
Driven granular gases with gravity
The Granular Phase Diagram
Velocity profiles, stresses, and Bagnold scaling of sheared granular system in zero gravity
Entropy and Temperature of a Static Granular Assembly
Computational Methods
Finite element method
Discrete (or distinct) element method
Applied element method
Molecular dynamics
Discontinuous Deformation Analysis
Other
Internal Energy
Equipartition theorem
Impulse
Extremal principles in nonequilibrium thermodynamics
Dissipation factor
Fracture and secondorder phase transitions
Ornsteinâ€"Uhlenbeck process
Weibull modulus
__________________________________
1 Originally posted by OneWhiteEye
here
Created on 09/22/2012 01:55 AM by admin
Updated on 09/27/2012 10:36 AM by admin

